The lipogenic regulator Sterol Regulatory Element Binding Factor-1c is required to maintain peripheral nerve structure and function

نویسندگان

  • Nico Mitro
  • Gaia Cermenati
  • Matteo Audano
  • Silvia Giatti
  • Maurizio D’Antonio
  • Emma De Fabiani
  • Maurizio Crestani
  • Enrique Saez
  • Inigo Azcoitia
  • Guido Cavaletti
  • Luis-Miguel Garcia-Segura
  • Roberto C Melcangi
  • Donatella Caruso
چکیده

MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keratinocyte growth factor induces lipogenesis in alveolar type II cells through a sterol regulatory element binding protein-1c-dependent pathway.

Keratinocyte growth factor (KGF) stimulates fatty acid and phospholipid synthesis in alveolar type II cells in vitro. KGF stimulates lipogenic enzymes, including fatty acid synthase and stearyl-CoA desaturase-1, and transcription factors involved in lipogenesis, such as sterol regulatory element binding protein (SREBP)-1c and CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPdelta. To define...

متن کامل

Lack of sterol regulatory element binding factor-1c imposes glial Fatty Acid utilization leading to peripheral neuropathy.

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted p...

متن کامل

Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets.

Overaccumulation of lipids in nonadipose tissues of obese rodents may lead to lipotoxic complications such as diabetes. To assess the pathogenic role of the lipogenic transcription factor, sterol regulatory element binding protein 1 (SREBP-1), we measured its mRNA in liver and islets of obese, leptin-unresponsive fa/fa Zucker diabetic fatty rats. Hepatic SREBP-1 mRNA was 2.4 times higher than i...

متن کامل

New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c.

The regulation of hepatic glucose metabolism has a key role in whole-body energy metabolism, since the liver is able to store (glycogen synthesis, lipogenesis) and to produce (glycogenolysis, gluconeogenesis) glucose. These pathways are regulated at several levels, including a transcriptional level, since many of the metabolism-related genes are expressed according to the quantity and quality o...

متن کامل

Transcriptional regulation of human SREBP-1c (sterol-regulatory-element-binding protein-1c): a key regulator of lipogenesis.

Sterol-regulatory-element-binding protein 1c (SREBP-1c) is one member of the family of transcription factors that stimulate sterol and fatty-acid biosynthesis in animal cells. Human SREBP-1c, mapped to chromosome 17p11.2, is expressed in liver, intestine, skeletal muscle and adipocytes. A section of genomic sequence from a chromosome 17 library, thought to contain the SREBP-1c promoter, was clo...

متن کامل

Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression.

Sterol regulatory element binding protein-1c (SREBP-1c) is a transcription factor that mediates insulin effects on hepatic gene expression. It is itself transcriptionally stimulated by insulin in hepatocytes. Here we show that SREBP-1c mRNA is expressed in adult rat skeletal muscles and that this expression is decreased by diabetes. The regulation of SREBP-1c expression was then assessed in cul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015